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Problem 1. Let a, b, c ∈ Z. Show that if a | bc and gcd(a, b) = 1, then a | c.

Solution. Since a | bc, we have
ak = bc for some k ∈ Z.

Since gcd(a, b) = 1, we have
ax + by = 1 for some x, y ∈ Z.

Multiplying by c gives
acx + bcy = c.

Plugging the first equation into this gives

acx + aky = a(cx + ky) = c.

Thus a | c.

Problem 2. Let n = 401 and a = 202.

(a) Show that a ∈ Z∗n.

(b) Find the inverse of a in Z∗n.

Solution. Perform the first half of the Euclidean algorithm to first

401 = 202(1) + 199
202 = 199(1) + 3
199 = 3(66) + 1

Thus gcd(401, 202) = 1, so 202 ∈ Z∗401.
The second half the the Euclidean algorithm tells us that

1 = 199 + 3(−66)
= 199 + [202− 199](−66)
= 199(67) + 202(−66)
= [401− 202](67) + 202(−66)
= 401(−67) + 202(−133).

Thus 1 = 202 · −133 in Z401, and 202−1 = −133 = 268.



Problem 3. Consider the five-cycles in S5.

(a) How many five-cycles are in S5? In A5?

(b) How many distinct cyclic subgroups of order five are in A5?

Solution. Each five cycle in S5 may be written in cycle notation with 1 in the first position, and is thenceforth
completely determined by the numbers in the next four positions, which are free to be any number from 2
to 5. There are 4! arrangements of these numbers, so there are 4! = 24 five-cycles in S5. Since five-cycles
have odd length, they are even permutations, and all are in A5.

Each cyclic subgroup of order five has a unique element which sends 1 to 2, and then is completely
determined by the final three positions; there are 3! ways to arrange the the last three numbers (which must
be 3, 4, or 5), so there are 3! = 6 cyclic subgroups of order five.

Alternatively, we may note that any two distinct subgroups of order 5 intersect trivially (by LaGrange’s
Theorem), and each such subgroup contains four five-cycles, so the number of subgroups is 24 five-cycles
divided by 4 five-cycles per subgroup; that is, 24/4 = 6.

Problem 4.
Let G be an abelian group. The torsion subgroup of G is

T (G) = {g ∈ G | gn = 1 for some n ∈ Z}.

(a) Show the T (G) is a normal subgroup of G.

(b) Show that every nontrivial element of G/T (G) has infinite order.

(c) Define φ : R → C∗ by φ(x) = cis 2πx. Then φ is a homomorphism. Find φ−1(T (G)).

Solution. First, to show that T (G) ≤ G, we verify the three properties of a subgroup.
(S0) Since 11 = 1, we see that 1 ∈ T (G).
(S1) Let x, y ∈ T (G). Then xm = 1 and yn = 1 for some m,n ∈ T (G). Thus

(xy)mn = xmnymn because G is abelian
= (xm)n(yn)m

= 1n · 1m

= 1

Thus xy ∈ T (G).
(S2) Let x ∈ T (G). Then xn = 1 for some n ∈ Z.

(x−1)n = xn · (x−1)n = (xx−1)n = 1n = 1;

thus x−1 ∈ T (G).
Next, we note that every subgroup of G is normal in G because G is abelian; thus T (G) / G.
Now let g ∈ G/T (G); where g = gT (G). Suppose g has finite order; then gm = 1 for some m ∈ Z. Thus

gm = 1 = T (G), so gm ∈ T (G). Thus (gm)n = 1 for some n ∈ Z, so gmn = 1, so g ∈ T (G); therefore g = 1,
so g is trivial (i.e., is the identity).

Finally, note that cis(2πx) = 1 ∈ C∗ if and only if x ∈ Z. Now by DeMoivre’s theorem, cis(θ)n = cis(nθ),
so

cis(2πx) has finite order ⇔ cis(2πx)n = cis(2πnx) = 1 for some n ∈ Z
⇔ nx ∈ Z for some n ∈ Z
⇔ x ∈ Q

Thus, φ−1(T (G)) = Q.
Let U = {z ∈ C | |z| = 1} denote the unit circle in C. Then φ(R) = U, and when we compose φ with the

canonical homomorphism β : U → U/T (U), we note that ker(β ◦ φ) = φ−1(ker(β)) = φ−1(T (U)) = Q, and
by the Isomorphism Theorem we obtain R/Q ∼= U/T (U).



Problem 5. Let G be a group and let a, b ∈ G. The commutator of a and b is

[a, b] = a−1b−1ab.

(a) Let φ : G → H be a group homomorphism and let a, b ∈ G.
Show that φ(a) and φ(b) commute if and only if [a, b] ∈ ker(φ).

(b) Let K / G such that [a, b] ∈ K for every a, b ∈ G. Show that G/K is abelian.

Solution. We have

φ(a), φ(b) commute ⇔ φ(b)φ(a) = φ(a)φ(b)

⇔ φ(a)−1φ(b)−1φ(a)φ(b) = 1

⇔ φ(a−1)φ(b−1)φ(a)φ(b) = 1

⇔ φ(a−1b−1ab) = 1

⇔ a−1b−1ab ∈ ker(φ)
⇔ [a, b] ∈ ker(φ).

Let a, b ∈ G/K, where x = xK. With K / G, we have a canonical homomorphism β : G → G/K, given
by β(x) = x, with kernel K. Thus

x, y commute ⇔ β(x), β(y) commute ⇔ [a, b] ∈ ker(β) = K.

Since a and b were selected arbitrarily, G/K is abelian.


